Quantitative physiology of Saccharomyces cerevisiae at near-zero specific growth rates.
نویسندگان
چکیده
Growth at near-zero specific growth rates is a largely unexplored area of yeast physiology. To investigate the physiology of Saccharomyces cerevisiae under these conditions, the effluent removal pipe of anaerobic, glucose-limited chemostat culture (dilution rate, 0.025 h(-1)) was fitted with a 0.22-microm-pore-size polypropylene filter unit. This setup enabled prolonged cultivation with complete cell retention. After 22 days of cultivation, specific growth rates had decreased below 0.001 h(-1) (doubling time of >700 h). Over this period, viability of the retentostat cultures decreased to ca. 80%. The viable biomass concentration in the retentostats could be accurately predicted by a maintenance coefficient of 0.50 mmol of glucose g(-1) of biomass h(-1) calculated from anaerobic, glucose-limited chemostat cultures grown at dilution rates of 0.025 to 0.20 h(-1). This indicated that, in contrast to the situation in several prokaryotes, maintenance energy requirements in S. cerevisiae do not substantially change at near-zero specific growth rates. After 22 days of retentostat cultivation, glucose metabolism was predominantly geared toward alcoholic fermentation to meet maintenance energy requirements. The strict correlation between glycerol production and biomass formation observed at higher specific growth rates was not maintained at the near-zero growth rates reached in the retentostat cultures. In addition to glycerol, the organic acids acetate, d-lactate, and succinate were produced at low rates during prolonged retentostat cultivation. This study identifies robustness and by-product formation as key issues in attempts to uncouple growth and product formation in S. cerevisiae.
منابع مشابه
Maintenance-energy requirements and robustness of Saccharomyces cerevisiae at aerobic near-zero specific growth rates
BACKGROUND Saccharomyces cerevisiae is an established microbial platform for production of native and non-native compounds. When product pathways compete with growth for precursors and energy, uncoupling of growth and product formation could increase product yields and decrease formation of biomass as a by-product. Studying non-growing, metabolically active yeast cultures is a first step toward...
متن کاملCellular responses of Saccharomyces cerevisiae at near-zero growth rates: transcriptome analysis of anaerobic retentostat cultures
Extremely low specific growth rates (below 0.01 h(-1) ) represent a largely unexplored area of microbial physiology. In this study, anaerobic, glucose-limited retentostats were used to analyse physiological and genome-wide transcriptional responses of Saccharomyces cerevisiae to cultivation at near-zero specific growth rates. While quiescence is typically investigated as a result of carbon star...
متن کاملPhysiological and Transcriptional Responses of Different Industrial Microbes at Near-Zero Specific Growth Rates.
The current knowledge of the physiology and gene expression of industrially relevant microorganisms is largely based on laboratory studies under conditions of rapid growth and high metabolic activity. However, in natural ecosystems and industrial processes, microbes frequently encounter severe calorie restriction. As a consequence, microbial growth rates in such settings can be extremely slow a...
متن کاملEffects of bioencapsulated Daphnia magna with Saccharomyces cerevisiae on the growth and feeding performance of Persian sturgeon (Acipenser persicus) larvae
BACKGROUNDS: Optimization of microbial compositions and load in live food during the process of bioencapsulation is one of the most important concerns in aquaculture, as it can promote the growth and feeding parameters of fish larvae. OBJECTIVES: The aim of this study was to determine the growth and feeding performance of Persian sturgeon larvae fed with bioencapsulated D. magna with Saccharomy...
متن کاملEffects of Saccharomyces cerevisiae on survival rate and growth performance of Convict Cichlid (Amatitlania nigrofasciata)
Using probiotics can control pathogens by a variety of mechanisms. Probiotics can promote growth performance and have, therefore, become increasingly important in the aquaculture industry. Convict Cichlid belongs to the family of Cichlidae and is known for its rapid development in laboratory conditions and is suitable for behavioral examinations. The aim of this study was to evaluate the effect...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 75 17 شماره
صفحات -
تاریخ انتشار 2009